Approximating the Main Conjecture in Vinogradov’s Mean Value Theorem
نویسنده
چکیده
We apply multigrade efficient congruencing to estimate Vinogradov’s integral of degree k for moments of order 2s, establishing strongly diagonal behaviour for 1 6 s 6 1 2 k(k + 1) − 1 3 k + o(k). In particular, as k → ∞, we confirm the main conjecture in Vinogradov’s mean value theorem for 100% of the critical interval 1 6 s 6 1 2 k(k + 1).
منابع مشابه
The Cubic Case of the Main Conjecture in Vinogradov’s Mean Value Theorem
We apply a variant of the multigrade efficient congruencing method to estimate Vinogradov’s integral of degree 3 for moments of order 2s, establishing strongly diagonal behaviour for 1 6 s 6 6. Consequently, the main conjecture is now known to hold for the first time in a case of degree exceeding 2.
متن کاملOn Vinogradov’s Mean Value Theorem: Strongly Diagonal Behaviour via Efficient Congruencing
We enhance the efficient congruencing method for estimating Vinogradov’s integral for moments of order 2s, with 1 6 s 6 k− 1. In this way, we prove the main conjecture for such even moments when 1 6 s 6 1 4 (k+1) , showing that the moments exhibit strongly diagonal behaviour in this range. There are improvements also for larger values of s, these finding application to the asymptotic formula in...
متن کاملVinogradov’s Mean Value Theorem via Efficient Congruencing, Ii
We apply the efficient congruencing method to estimate Vinogradov’s integral for moments of order 2s, with 1 6 s 6 k − 1. Thereby, we show that quasi-diagonal behaviour holds when s = o(k), we obtain near-optimal estimates for 1 6 s 6 1 4k 2 + k, and optimal estimates for s > k − 1. In this way we come half way to proving the main conjecture in two different directions. There are consequences f...
متن کاملHarish-Chandra Research Institute Introduction to the circle method of Hardy, Ramanujan and Littlewood
In these lectures we give an overview of the circle method introduced by Hardy and Ramanujan at the beginning of the twentieth century, and developed by Hardy, Littlewood and Vinogradov, among others. We also try to explain the main difficulties in proving Goldbach’s conjecture and we give a sketch of the proof of Vinogradov’s three-prime Theorem.
متن کاملVinogradov’s Mean Value Theorem via Efficient Congruencing
We obtain estimates for Vinogradov’s integral which for the first time approach those conjectured to be the best possible. Several applications of these new bounds are provided. In particular, the conjectured asymptotic formula in Waring’s problem holds for sums of s kth powers of natural numbers whenever s > 2k + 2k − 3.
متن کامل